亚洲av无码av日韩av网站,玩弄少妇高潮抽搐在线观看,天天躁日日躁白天躁晚上躁,亚洲av无码潮喷在线观看,无码国内精品久久人妻

讓人快樂(lè)的好設(shè)計(jì)——唐納德·A·諾曼TED演講

 

唐納德·諾曼(Donald Arthur Norman,1935年12月25日-)為美國(guó)認(rèn)知心理學(xué)家、計(jì)算機(jī)工程師、工業(yè)設(shè)計(jì)家,認(rèn)知科學(xué)學(xué)會(huì)的發(fā)起人之一,關(guān)注人類(lèi)社會(huì)學(xué)、行為學(xué)的研究。1999年,他被Upside雜志提名為世界100精英之一。Norman博士出版了大量的書(shū)籍和研究報(bào)告。他的作品有13本之多,并被翻譯成12種語(yǔ)言。其中最有名的要數(shù)《設(shè)計(jì)心理學(xué)》、 《情感化設(shè)計(jì)》 以及2009年出版的 《未來(lái)產(chǎn)品的設(shè)計(jì)》。

 

 

DON NORMAN談無(wú)需設(shè)計(jì)師的設(shè)計(jì)

作者:Don Norman    譯者:方舟 K ][ N G of A R K

 

Don Norman聲稱(chēng)他的目標(biāo)在生活中做出了顯著的差異,但這樣做有樂(lè)趣。他是商人(在蘋(píng)果公司,惠普?qǐng)?zhí)行副總裁和啟動(dòng))和學(xué)術(shù)(哈佛大學(xué),加州大學(xué)圣迭戈分校,西北大學(xué),KAIST)。由于諾曼尼爾森集團(tuán)的創(chuàng)始人之一,他擔(dān)任公司董事會(huì),并幫助企業(yè)使產(chǎn)品更愉快,稱(chēng)心,和盈利。他是一個(gè)IDEO的研究院和國(guó)家工程學(xué)院的成員。

 

第一次受到優(yōu)秀產(chǎn)品設(shè)計(jì)的震撼,令我終身難忘。那時(shí)我剛加入Apple,還在熟悉業(yè)務(wù)。工業(yè)設(shè)計(jì)團(tuán)隊(duì)的一名成員來(lái)訪,他給我看了一個(gè)產(chǎn)品提案的仿制模型。“哇哦,”我說(shuō),“我想要一個(gè)!這啥東西呀?”

那次經(jīng)歷讓我感受到了設(shè)計(jì)的力量:我還不知道那是什么東西,它就令我為之激動(dòng)和狂熱!這種讓人不禁叫出“哇哦”的設(shè)計(jì),只來(lái)自有創(chuàng)意的設(shè)計(jì)師。這是很主觀的、很個(gè)人的事情。你瞧瞧,工程師可不喜歡聽(tīng)這個(gè)——沒(méi)辦法量化?那就不重要!如此一來(lái),消滅設(shè)計(jì)師的趨勢(shì)就出現(xiàn)了。我們工程師只靠測(cè)試就可以走向成功,簡(jiǎn)單得很,誰(shuí)還需要設(shè)計(jì)師!有震撼力、俘獲人心的設(shè)計(jì)所帶來(lái)的激動(dòng)心情,被認(rèn)為是無(wú)關(guān)緊要的。更糟糕的是,設(shè)計(jì)的本質(zhì)正在被忽視和踐踏,設(shè)計(jì)正在面臨危機(jī)。


不相信嗎?我們來(lái)看看Google。有一位高級(jí)設(shè)計(jì)師離開(kāi)Google的事情 ,曾被公開(kāi)報(bào)道并為人關(guān)注。這位高級(jí)設(shè)計(jì)師在自己的博客上說(shuō)道,Google對(duì)設(shè)計(jì)不感興趣,也不想?yún)⑼冈O(shè)計(jì)。似乎Google主要是依靠測(cè)試結(jié)果來(lái)進(jìn)行設(shè)計(jì)決策,而不是依靠人的技能和判斷。Google能全權(quán)掌控試驗(yàn),快速地把多種樣例發(fā)布給數(shù)以百萬(wàn)計(jì)的用戶(hù)群體,讓兩種設(shè)計(jì)相互競(jìng)爭(zhēng),決定選取哪種設(shè)計(jì)的根據(jù),是點(diǎn)擊量、銷(xiāo)售業(yè)績(jī)等等任何他們想要的客觀衡量標(biāo)準(zhǔn)。什么樣的藍(lán)色最好?測(cè)試一下便知。怎么擺放元素最好?測(cè)試一下就行。頁(yè)面如何布局?測(cè)試一下即可。

 這種依靠測(cè)試的做法非Google獨(dú)有。Amazon.com一直在依此進(jìn)行實(shí)踐。多年以前我就被驕傲地告知,他們不再陷入設(shè)計(jì)好壞的爭(zhēng)論——他們只做測(cè)試,然后根據(jù)數(shù)據(jù)來(lái)決定。當(dāng)然,這正是以人為中心的迭代式設(shè)計(jì)思路(human-centered ierative design):制作原型、測(cè)試、修訂,如此循環(huán)迭代。

這就是設(shè)計(jì)的未來(lái)嗎?誠(chéng)然有不少人這么想,已然是演講和研討會(huì)上的熱門(mén)話(huà)題。畢竟支持者可以理智地問(wèn)道:誰(shuí)要來(lái)反對(duì)用數(shù)據(jù)說(shuō)話(huà)嗎?

 

兩種創(chuàng)新:漸進(jìn)式改善和新概念

談到設(shè)計(jì),和幾乎所有的創(chuàng)新,至少有兩種截然不同的實(shí)踐形式。其一是漸進(jìn)式改善(incremental improvement)。這意味著,一家企業(yè)在產(chǎn)品制造過(guò)程中的單位成本隨著對(duì)產(chǎn)品持續(xù)、漸進(jìn)的改善而逐漸降低。由此形成的穩(wěn)定的漸進(jìn)式創(chuàng)新鏈條,有助于運(yùn)營(yíng)、部件的供貨以及供應(yīng)鏈管理。持續(xù)對(duì)產(chǎn)品設(shè)計(jì)進(jìn)行修補(bǔ):調(diào)整界面、追加新功能、在各處做小修訂等等。在既有平臺(tái)的基礎(chǔ)上,采用不同的功能搭配組合,簡(jiǎn)單做些微修改,就可做到每年都發(fā)布新產(chǎn)品。既減少部分功能,以便推出低端產(chǎn)品線(xiàn),也可以對(duì)部分功能進(jìn)行強(qiáng)化或追加全新的功能。采用漸進(jìn)式改善,基本的平臺(tái)底子總是不變的。漸進(jìn)式設(shè)計(jì)和創(chuàng)新不如開(kāi)創(chuàng)新概念、新想法來(lái)的有魅力,但比后者常見(jiàn)得多,也重要得多。這樣的創(chuàng)新都是小創(chuàng)新,但其中大部分都非常成功。此即所謂的企業(yè)“搖錢(qián)樹(shù)(cash cows)”:這樣的一條產(chǎn)品線(xiàn),只需追加很少的開(kāi)發(fā)成本,就能實(shí)現(xiàn)常年獲利頗豐。

第二種形式的設(shè)計(jì),則是教授“突破性產(chǎn)品創(chuàng)新”時(shí)所談的那種設(shè)計(jì),廣泛見(jiàn)之于設(shè)計(jì)、工程和MBA課程當(dāng)中。這種設(shè)計(jì)即發(fā)明新概念、定義新產(chǎn)品、開(kāi)創(chuàng)新商機(jī),是創(chuàng)新中有趣的那一部分,因而也是大部分設(shè)計(jì)師、發(fā)明家希望盤(pán)踞的領(lǐng)地。然而這種設(shè)計(jì)的風(fēng)險(xiǎn)是很大的:大部分創(chuàng)新會(huì)失敗。成功的創(chuàng)新可能經(jīng)歷數(shù)十年才會(huì)被廣泛接受——所以創(chuàng)新者并不一定就是獲益者。

在開(kāi)頭我提到的那個(gè)Apple產(chǎn)品模型事例中,設(shè)計(jì)師就是在發(fā)明新概念。相較之下,Google和Amazon實(shí)踐的就是漸進(jìn)式改善。這是兩種不同的實(shí)踐活動(dòng)。和大部分創(chuàng)新一樣,那個(gè)Apple產(chǎn)品最終失敗了。為什么會(huì)失敗呢?我過(guò)一會(huì)兒再來(lái)說(shuō)明。

兩種形式的設(shè)計(jì)都是必要的。圍繞“數(shù)據(jù)驅(qū)動(dòng)(data-driven)”型設(shè)計(jì)的爭(zhēng)論是有誤導(dǎo)性的,因?yàn)槠錈o(wú)非是用一種設(shè)計(jì)的優(yōu)勢(shì)來(lái)否定另一種設(shè)計(jì)的重要性。對(duì)于改善既有產(chǎn)品而言,數(shù)據(jù)驅(qū)動(dòng)型設(shè)計(jì)確實(shí)行之有效。然而,產(chǎn)品本身又是從哪兒來(lái)的呢?當(dāng)然是來(lái)自某個(gè)有創(chuàng)意的腦袋瓜。測(cè)試有助于強(qiáng)化一個(gè)既有想法,前提是需要有創(chuàng)意的設(shè)計(jì)師和發(fā)明家來(lái)給出這個(gè)想法。

 

為什么測(cè)試很重要卻又不完善

數(shù)據(jù)驅(qū)動(dòng)型設(shè)計(jì)正好比一種知名的優(yōu)化算法——“爬山(hill-climbing)”法。設(shè)想你身在一座不熟悉的山丘上,一片漆黑伸手不見(jiàn)五指。如果你看不見(jiàn),要如何爬到山頂呢?你可以測(cè)試自己周?chē)牡匦?,哪個(gè)方向是最陡且往上的,就向哪個(gè)方向邁一步。重復(fù)探尋,直到你周?chē)我环较蚨纪滦袨橹埂?/p>

但如果這片地區(qū)有很多山丘怎么辦呢?如何能知道你是否處于整片山丘的最高處呢?答案是:你不能知道。此即“local maximum(局部最大值)”問(wèn)題:你無(wú)法判定你是在最高的山丘頂上(即全局最大值,global maximum)上,還是在一個(gè)小山丘頂上。

在數(shù)學(xué)空間中,計(jì)算機(jī)可嘗試從空間中多個(gè)不同的部分同時(shí)施行“爬山”算法,并選取所有嘗試結(jié)果中的最大值,從而避免“局部最大值”問(wèn)題。這種做法仍然無(wú)法保證能取到真正的最大值,但能避免被局限在單一的局部最大值上。這種策略對(duì)設(shè)計(jì)師而言鮮能湊效。確定一個(gè)起點(diǎn)就已經(jīng)很不容易了,更不用說(shuō)確定多個(gè)不同的起點(diǎn)。如此一來(lái),通過(guò)測(cè)試來(lái)進(jìn)行改進(jìn)的設(shè)計(jì)只可能達(dá)到一個(gè)局部上限。測(cè)試永遠(yuǎn)不可能告訴我們,是否存在好得多的方案(也許另一個(gè)山丘要高得多)。

于是就需要有創(chuàng)意的人來(lái)參與。當(dāng)這個(gè)人重新構(gòu)造問(wèn)題,認(rèn)識(shí)到之前探索的局限性,突破就會(huì)出現(xiàn)。設(shè)計(jì)和發(fā)明需要?jiǎng)?chuàng)意的一面。漸進(jìn)式的設(shè)計(jì)無(wú)法做到這一點(diǎn)。

 

偉大創(chuàng)新的障礙

激動(dòng)人心的創(chuàng)新所具備的一些根本特征,使創(chuàng)新本身不適合通過(guò)測(cè)試來(lái)進(jìn)行決斷。人們對(duì)新穎設(shè)計(jì)有抵觸情緒,采取的態(tài)度會(huì)趨于保守。做事情的新技術(shù)、新方法往往要?dú)v經(jīng)數(shù)十甚至上百年才會(huì)被接受。與此不同的是,各種基于測(cè)試的設(shè)計(jì)方式都假設(shè),做出一個(gè)改動(dòng)之后,能夠立刻測(cè)試、得到反饋,并立刻決定改動(dòng)后是否比改動(dòng)前更好。

我們沒(méi)有辦法判別激進(jìn)的新想法最終是否能成功。我們還需要偉大的領(lǐng)頭者和勇氣。歷史告訴我們,有許多人面對(duì)一次又一次的拒絕和抵觸,堅(jiān)持了很長(zhǎng)時(shí)間,其想法才終獲接受。這些成功者經(jīng)常指出,在產(chǎn)品獲得成功后,人們就無(wú)法想象以前沒(méi)有這個(gè)產(chǎn)品的時(shí)候是怎么過(guò)的了。歷史也告訴我們,有許多人堅(jiān)持過(guò),最終也未獲得成功。對(duì)激進(jìn)的新想法持懷疑態(tài)度并不為過(guò)。

一個(gè)初成的想法不被接受,因素很多:可能是因?yàn)榧夹g(shù)還不成熟,可能是因?yàn)檫€有很多東西有待優(yōu)化,可能是因?yàn)槭鼙娙后w還沒(méi)有做好接受它的準(zhǔn)備,也可能是因?yàn)檫@是個(gè)糟糕的想法。判定其中的主導(dǎo)因素是很困難的——是在確立想法很久之后,才會(huì)得到的后見(jiàn)之明。

一個(gè)激動(dòng)人心的想法,從想法形成并初步實(shí)現(xiàn),到最終認(rèn)定其在市場(chǎng)中的成功或失敗,歷時(shí)長(zhǎng)久。 有些人想以證據(jù)作為標(biāo)準(zhǔn),對(duì)新發(fā)展方向進(jìn)行定奪,卻被這漫長(zhǎng)的時(shí)間差所擊敗。 更好的方案 即使曾經(jīng)被提出過(guò) ,也可能會(huì)被自動(dòng)化測(cè)試否決掉——這并不是因?yàn)樗缓?,而是因?yàn)樗炔涣藬?shù)十年的時(shí)間來(lái)獲得認(rèn)可。只看測(cè)試結(jié)果的人注定會(huì)錯(cuò)過(guò)巨大的回報(bào)。

當(dāng)然,有很多合理的商業(yè)考慮能夠解釋?zhuān)瑸槭裁春雎杂锌赡芨玫姆桨甘敲髦堑?。畢竟,如果受眾沒(méi)有做好接受新想法的準(zhǔn)備,這個(gè)新想法一開(kāi)始就是會(huì)在市場(chǎng)中失敗。短期看來(lái)確實(shí)如此。但若要想在未來(lái)獲得成功,最佳的方案是先發(fā)展新想法并將其商業(yè)化,投入市場(chǎng)以獲取經(jīng)驗(yàn),并不斷地進(jìn)行優(yōu)化,發(fā)展客戶(hù)基礎(chǔ)。同時(shí),公司還要做好準(zhǔn)備,應(yīng)對(duì)現(xiàn)有方案之不測(cè)。既要保持把現(xiàn)有的做好,還要準(zhǔn)備隨時(shí)迎接新的。如果公司沒(méi)能洞察到新趨勢(shì),其競(jìng)爭(zhēng)對(duì)手就會(huì)迎頭趕上,接手市場(chǎng)。這些競(jìng)爭(zhēng)對(duì)手往往是被現(xiàn)有公司忽略的小創(chuàng)業(yè)團(tuán)隊(duì)。之所以被忽略,是因?yàn)檫@些新來(lái)者的所作所為還不太為市場(chǎng)所接受,無(wú)論如何都不像是老公司現(xiàn)有業(yè)務(wù)的有力挑戰(zhàn)者。請(qǐng)參見(jiàn)“創(chuàng)新者的困境(The Innovator's Dilemma) ”,以了解這種公司的運(yùn)營(yíng)困境。

用于屏幕驅(qū)動(dòng)(screen-driven)型設(shè)備和電子游戲的勢(shì)控(gestural)界面和多點(diǎn)觸控界面,正是 兩個(gè)久經(jīng)蹉跎才成功的創(chuàng)新例子。 它們難道不是杰出的創(chuàng)新嗎?當(dāng)然是。它們難道不杰出嗎?當(dāng)然杰出。但是它們新嗎?絕對(duì)不新!多點(diǎn)觸控設(shè)備在研究實(shí)驗(yàn)室里等待了近30年,才首次迎來(lái)大規(guī)模量產(chǎn)的成功產(chǎn)品。20年前我就見(jiàn)過(guò)勢(shì)控界面演示。新想法要花上相當(dāng)可觀的時(shí)間,才會(huì)在市場(chǎng)上獲得成功。過(guò)快地把想法商業(yè)化,往往以失?。ㄒ约按蠊P的資金損失)而告終。

當(dāng)年那位給我看模型的Apple設(shè)計(jì)師同事也未能幸免。他給我看的是一臺(tái)為小學(xué)生設(shè)計(jì)的便攜設(shè)備,其外形設(shè)計(jì)不同于我之前所見(jiàn)的任何東西。那真是絕妙的設(shè)計(jì)——即便是在我這通常很挑剔的眼里,其設(shè)計(jì)也完美切合了其用途和受眾??上У氖?,最終產(chǎn)品成了Apple公司部門(mén)間內(nèi)訌的犧牲品。盡管產(chǎn)品最終被投放到了市場(chǎng)中,但部門(mén)間的不合導(dǎo)致了糟糕的實(shí)施、糟糕的產(chǎn)品支持和糟糕的市場(chǎng)推廣,破壞了產(chǎn)品的整體性。

公司抵觸完全地創(chuàng)新,也有根有據(jù)。在不能確定贏利潛力的情況下開(kāi)發(fā)新產(chǎn)品線(xiàn),代價(jià)是很高的。而且現(xiàn)有產(chǎn)品的責(zé)任部門(mén)也會(huì)擔(dān)心新產(chǎn)品打壓了現(xiàn)有產(chǎn)品的銷(xiāo)售(這叫做“同類(lèi)相食”)。這些擔(dān)憂(yōu)一般都是合理的。這種形勢(shì)也屬經(jīng)典案例,即有益于公司的好事情對(duì)現(xiàn)有產(chǎn)品部門(mén)來(lái)說(shuō)卻是壞事情,因?yàn)槟且馕吨F(xiàn)有產(chǎn)品部門(mén)職員得到升遷和獎(jiǎng)勵(lì)的機(jī)會(huì)不容樂(lè)觀。如此想來(lái),公司會(huì)抵觸創(chuàng)新也就不足為奇了。統(tǒng)計(jì)數(shù)據(jù)清楚地表明,盡管極少數(shù)創(chuàng)新取得了非凡的成功,但絕大部分創(chuàng)新都失敗了并付出慘重代價(jià)。無(wú)論公司的新聞稿和年度報(bào)告里怎么說(shuō),公司都會(huì)猶豫甚至抵觸創(chuàng)新,這都不足為奇,因?yàn)槌直J貞B(tài)度是明智的。

 

展望未來(lái)

數(shù)據(jù)驅(qū)動(dòng)的自動(dòng)化流程會(huì)慢慢侵占如今人類(lèi)設(shè)計(jì)師所掌握的地盤(pán)。諸如基因算法、知識(shí)密集型系統(tǒng)等等這些依靠計(jì)算機(jī)生成創(chuàng)意的新方法會(huì)開(kāi)始接管設(shè)計(jì)的創(chuàng)意空間。醫(yī)療診斷或工程設(shè)計(jì)等其他領(lǐng)域也正在發(fā)生相同的變化。

我們將面對(duì)更多無(wú)需設(shè)計(jì)師的設(shè)計(jì),但主要只限于在對(duì)既有概念的強(qiáng)化、精化和優(yōu)化方面。即使到了以后,神經(jīng)網(wǎng)絡(luò)、基因算法,抑或其他某種尚未被發(fā)現(xiàn)的方法都能被用來(lái)開(kāi)發(fā)新的、有創(chuàng)意的人工系統(tǒng)了,任何新概念也還是須要面對(duì)同樣的困難,經(jīng)歷漫長(zhǎng)的接受周期,??人類(lèi)在心理上的、社會(huì)上的和政治上的復(fù)雜需求。要做到這一點(diǎn),我們需要有創(chuàng)意的設(shè)計(jì)師、有創(chuàng)意的商業(yè)人士和有冒險(xiǎn)精神的人來(lái)突破極限。會(huì)有新想法遭到抵觸。許多偉大的創(chuàng)新將以更多巨大的失敗為代價(jià)。

無(wú)需設(shè)計(jì)師的設(shè)計(jì)?有些人討厭人類(lèi)判斷的含糊性和不確定性,討厭人類(lèi)不靠譜的過(guò)往表現(xiàn)和自相矛盾的論調(diào)。這些人會(huì)嘗試剝離設(shè)計(jì)中的人為因素,轉(zhuǎn)投數(shù)字和數(shù)據(jù)和懷抱,只因?yàn)閿?shù)字和數(shù)據(jù)看起來(lái)似乎能提供確定性。還有一些人希望借助創(chuàng)意來(lái)得到巨大收獲,他們會(huì)遵循自己的原則來(lái)做。前者會(huì)帶來(lái)持續(xù)的小改進(jìn),顯著提高生產(chǎn)力并降低成本。后者會(huì)面對(duì)巨大的失敗,并迎接偶然發(fā)生的巨大成功——這些巨大成功會(huì)改變世界。

 

————以下是英文原文:

I will always remember my first introduction to the power of good product design. I was newly arrived at Apple, still learning the ways of business, when I was visited by a member of Apple's Industrial Design team. He showed me a foam mockup of a proposed product. "Wow," I said, "I want one! What is it?"

 
That experience brought home the power of design: I was excited and enthusiastic even before I knew what it was. This type of visceral "wow" response requires creative designers. It is subjective, personal. Uh oh, this is not what engineers like to hear. If you can't put a number to it, it's not important. As a result, there is a trend to eliminate designers. Who needs them when we can simply test our way to success? The excitement of powerful, captivating design is defined as irrelevant. Worse, the nature of design is in danger.
 
Don't believe me? Consider Google. In a well-publicized move, a senior designer at Google recently quit, stating that Google had no interest in or understanding of design. Google, it seems, relies primarily upon test results, not human skill or judgment. Want to know whether a design is effective? Try it out. Google can quickly submit samples to millions of people in well-controlled trials, pitting one design against another, selecting the winner based upon number of clicks, or sales, or whatever objective measure they wish. Which color of blue is best? Test. Item placement? Test. Web page layout? Test.
 
This procedure is hardly unique to Google. Amazon.com has long followed this practice. Years ago I was proudly informed that they no longer have debates about which design is best: they simply test them and use the data to decide. And this, of course, is the approach used by the human-centered iterative design approach: prototype, test, revise.
 
Is this the future of design? Certainly there are many who believe so. This is a hot topic on the talk and seminar circuit. After all, the proponents ask reasonably, who could object to making decisions based upon data?
 
 
Two Types of Innovation: Incremental Improvements and New Concepts
In design—and almost all innovation, for that matter—there are at least two distinct forms. One is incremental improvement. In the manufacturing of products, companies assume that unit costs will continually decrease through continual, incremental improvements. A steady chain of incremental innovation enhances operations, the sourcing of parts and supply-chain management. The product design is continually tinkered with, adjusting the interface, adding new features, changing small things here and there. New products are announced yearly that are simply small modifications to the existing platform by a different constellation of features. Sometimes features are removed to enable a new, low-cost line. Sometimes features are enhanced or added. In incremental improvement, the basic platform is unchanged. Incremental design and innovation is less glamorous than the development of new concepts and ideas, but it is both far more frequent and far more important. Most of these innovations are small, but most are quite successful. This is what companies call "their cash cow": a product line that requires very little new development cost while being profitable year after year.
 
The second form of design is what is generally taught in design, engineering and MBA courses on "breakthrough product innovation." Here is where new concepts get invented, new products defined, and new businesses formed. This is the fun part of innovation. As a result, it is the arena that most designers and inventors wish to inhabit. But the risks are great: most new innovations fail. Successful innovations can take decades to become accepted. As a result, the people who create the innovation are not necessarily the people who profit from it.
 
In my Apple example, the designers were devising a new conception. In the case of Google and Amazon, the companies are practicing incremental enhancement. They are two different activities. Note that the Apple product, like most new innovations, failed. Why? I return to this example later.
 
Both forms of innovation are necessary. The fight over data-driven design is misleading in that it uses the power of one method to deny the importance of the second. Data-driven design through testing is indeed effective at improving existing products. But where did the idea for the product come from in the first place? From someone's creative mind. Testing is effective at enhancing an idea, but creative designers and inventors are required to come up with the idea.
 
 
Why Testing Is Both Essential and Incomplete
Data-driven design is "hill-climbing," a well-known algorithm for optimization. Imagine standing in the dark in an unknown, hilly terrain. How do you get to the top of the hill when you can't see? Test the immediate surroundings to determine which direction goes up the most steeply and take a step that way. Repeat until every direction leads to a lower level.
 
But what if the terrain has many hills? How would you know whether you are on the highest? Answer: you can't know. This is called the "local maximum" problem: you can't tell if you are on highest hill (a global maximum) or just at the top of a small one.
 
When a computer does hill climbing on a mathematical space, it tries to avoid the problem of local maxima by initiating climbs from numerous, different parts of the space being explored, selecting the highest of the separate attempts. This doesn't guarantee the very highest peak, but it can avoid being stuck on a low-ranking one. This strategy is seldom available to a designer: it is difficult enough to come up with a single starting point, let alone multiple, different ones. So, refinement through testing in the world of design is usually only capable of reaching the local maximum. Is there a far better solution (that is, is there a different hill which yields far superior results)? Testing will never tell us.
 
Here is where creative people come in. Breakthroughs occur when a person restructures the problem, thereby recognizing that one is exploring the wrong space. This is the creative side of design and invention. Incremental enhancements will not get us there.
 
 
Barriers to Great Innovation
Dramatic new innovation has some fundamental characteristics that make it inappropriate for judgment through testing. People resist novelty. Behavior tends to be conservative. New technologies and new methods of doing things usually take decades to be accepted – sometimes multiple decades. But the testing methods all assume that one can make a change, try it out, and immediately determine if it is better than what is currently available.
 
There is no known way to tell if a radical new idea will eventually be successful. Here is where great leadership and courage is required. History tells us of many people who persevered for long periods in the face of repeated rejection before their idea was accepted, often to the point that after success, people could not imagine how they got along without it before. History also tells us of many people who persevered yet never were able to succeed. It is proper to be skeptical of radical new ideas.
 
In the early years of an idea, it might not be accepted because the technology isn't ready, or because there is a lot more optimization still to be done, or because the audience isn't ready. or because it is a bad idea. It is difficult to determine which of those reasons dominates. The task only becomes easy in hindsight, long after it becomes established.
 
These long periods between formation and initial implementation of a novel idea and its eventual determination of success or failure in the marketplace is what defeats those who wish to use evidence as a decision criterion for following a new direction. Even if a superior way of doing something has been found, the automated test process will probably reject it, not because the idea is inferior, but because it cannot wait decades for the answer. Those who look only at test results will miss the large payoff.
 
Of course there are sound business reasons why ignoring potentially superior approaches might be a wise decision. After all, if the audience is not ready for the new approach, it would initially fail in the marketplace. That is true, in the short run. But to prosper in the future, the best approach would be to develop and commercialize the new idea to get marketplace experience, to begin the optimization process, and to develop the customer base. At the same time one is preparing the company for the day when the method takes off. Sure, keep doing the old, but get ready for the new. If the company fails to recognize the newly emerging method, its competitors will take over. Quite often these competitors will be a startup that existing companies ignored because what they were doing was not well accepted, and in any event did not appear to challenge the existing business: see "The innovator's dilemma."
 
Gestural, multi-touch interfaces for screen-driven devices and computer games are good examples. Are these a brilliant new innovation? Brilliant? Yes. New? Absolutely not. Multi-touch devices were in research labs for almost three decades before the first successful mass-produced products. I saw gestures demonstrated over two decades ago. New ideas take considerable time to reach success in the marketplace. If an idea is commercialized too soon, the result is usually failure (and a large loss of money).
 
This is precisely what the Apple designer of my opening paragraph had done. What I was shown was a portable computer designed for schoolchildren with a form factor unlike anything I had ever seen before. It was wonderful, and even to my normally critical eye, it looked like a perfect fit for the purpose and audience. Alas, the product got caught in a political fight between warring Apple divisions. Although it was eventually released into the marketplace, the fight crippled its integrity and it was badly executed, badly supported, and badly marketed.
 
The resistance of a company to new innovations is well founded. It is expensive to develop a new product line with unknown profitability. Moreover, existing product divisions will be concerned that the new product will disrupt existing sales (this is called "cannibalization"). These fears are often correct. This is a classic case of what is good for the company being bad for an existing division, which means bad for the promotion and reward opportunities for the existing division. Is it a wonder companies resist? The data clearly show that although a few new innovations are dramatically successful, most fail, often at great expense. It is no wonder that companies are hesitant – resistant – to innovation no matter what their press releases and annual reports claim. To be conservative is to be sensible.
 
 
The Future
Automated data-driven processes will slowly make more and more inroads into the space now occupied by human designers. New approaches to computer-generated creativity such as genetic algorithms, knowledge-intensive systems, and others will start taking over the creative aspect of design. This is happening in many other fields, whether it be medical diagnosis or engineering design.
 
We will get more design without designers, but primarily of the enhancement, refinement, and optimization of existing concepts. Even where new creative artificial systems are developed, whether by neural networks, genetic algorithms, or some yet undiscovered method, any new concept will still face the hurdle of overcoming the slow adoption rate of people and of overcoming the complex psychological, social, and political needs of people. To do this, we need creative designers, creative business people, and risk takers willing to push the boundaries. New ideas will be resisted. Great innovations will come at the cost of multiple great failures.
 
Design without designers? Those who dislike the ambiguity and uncertainty of human judgments, with its uncertain track record and contradictory statements will try to abolish the human element in favor of the certainty that numbers and data appear to offer. But those who want the big gains that creative judgment can produce will follow their own judgment. The first case will bring about the small, continual improvements that have contributed greatly to the increased productivity and lowering of costs of our technologies. The second case will be rewarded with great failures and occasional great success. But those great successes will transform the world.
 

方舟博客http://blog.csdn.net/kingofark

Via designqj.

 

 

你可能對(duì)這些感興趣
    D&AD今年的全場(chǎng)大獎(jiǎng),是用excel做的丨創(chuàng)意白皮書(shū)
    廣告和藝術(shù)之間的界限正在變得模糊。
    by 毛毛.G
    5 評(píng)論
    55 贊
    13 收藏